Site d'information sur les

Données de la Recherche

Text mining of 15 million full-text scientific articles

11 july 2017 - preprint in bioRxiv
Publié le 25 juillet 2017 par Thérèse Hameau

Abstract

Across academia and industry, text mining has become a popular strategy for keeping up with the rapid growth of the scientific literature. Text mining of the scientific literature has mostly been carried out on collections of abstracts, due to their availability. Here we present an analysis of 15 million English scientific full-text articles published during the period 1823–2016. We describe the development in article length and publication sub-topics during these nearly 250 years. We showcase the potential of text mining by extracting published protein–protein, disease–gene, and protein subcellular associations using a named entity recognition system, and quantitatively report on their accuracy using gold standard benchmark data sets. We subsequently compare the findings to corresponding results obtained on 16.5 million abstracts included in MEDLINE and show that text mining of full-text articles consistently outperforms using abstracts only.

En poursuivant votre navigation, sans modifier vos paramètres, vous acceptez l'utilisation et le dépôt de cookies destinés à mesurer la fréquentation du site grâce au logiciel Matomo. Pour plus d'informations, gérer ou modifier les paramètres, vous pouvez vous rendre sur notre page de politique de confidentialité.
OK
Modifier les paramètres